zum Inhalt springen

Publikationen

  • Michel, M., Comparative Studies of Energy Homeostasis in Vertebrates. Front Endocrinol, 2018. in press
  • Elaswad, A., et al., Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. J Vis Exp, 2018(131).
  • Michel, M., et al., Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci U S A, 2016. 113(11): p. 3084-9.
  • Michel, M. and L.C. Lyons, Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci, 2014. 8: p. 133.
  • Michel, M., et al., Protein phosphatase-dependent circadian regulation of intermediate-term associative memory. J Neurosci, 2013. 33(10): p. 4605-13.
  • Michel, M., M.J. Schmidt, and K. Mirnics, Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol, 2012. 72(10): p. 1277-87.
  • Michel, M., et al., Massed training-induced intermediate-term operant memory in aplysia requires protein synthesis and multiple persistent kinase cascades. J Neurosci, 2012. 32(13): p. 4581-91.
  • Michel, M., C.L. Green, and L.C. Lyons, PKA and PKC are required for long-term but not short-term in vivo operant memory in Aplysia. Learn Mem, 2011. 18(1): p. 19-23.
  • Michel, M., et al., PKG-mediated MAPK signaling is necessary for long-term operant memory in Aplysia. Learn Mem, 2011. 18(2): p. 108-17.
  • Nikitin, E.S., et al., Persistent sodium current is a nonsynaptic substrate for long-term associative memory. Curr Biol, 2008. 18(16): p. 1221-6.
  • Michel, M., et al., Different phases of long-term memory require distinct temporal patterns of PKA activity after single-trial classical conditioning. Learn Mem, 2008. 15(9): p. 694-702.
  • Kemenes, G., et al., Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J Neurosci, 2006. 26(23): p. 6298-302.